Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorJalali, Houman Bahmani
dc.contributor.authorAria, Mohammad Mohammadi
dc.contributor.authorDikbas, Ugur Meric
dc.contributor.authorSadeghi, Sadra
dc.contributor.authorKumar, Baskaran Ganesh
dc.contributor.authorSahin, Mehmet
dc.contributor.authorKavakli, Ibrahim Halil
dc.contributor.authorOw-Yang, Cleva W.
dc.contributor.authorNizamoglu, Sedat
dc.date.accessioned2019-07-04T07:32:20Z
dc.date.available2019-07-04T07:32:20Z
dc.date.issued2018en_US
dc.identifier.citationACS NANO Volume: 12 Issue: 8 Pages: 8104-8114 DOI: 10.1021/acsnano.8b02976en_US
dc.identifier.issn1936-0851
dc.identifier.issneISSN: 1936-086X
dc.identifier.otherPubMed ID: 30020770
dc.identifier.otherAccession Number: WOS:000443525600061
dc.identifier.otherDOI: 10.1021/acsnano.8b02976
dc.identifier.urihttp://acikerisim.agu.edu.tr/xmlui/handle/20.500.12573/63
dc.descriptionThis project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (grant agreement no. 639846). We thank KUYTAM (Koc University Surface Science and Technology Center) for providing XRD and UV-vis-NIR spectrophotometer infrastructures. We also thank Dr. Ceren Yilmaz Akkaya for XRD and Prof. Havva Funda Acar Yagci for the PL measurement.en_US
dc.description.abstractLight-induced stimulation of neurons via photoactive surfaces offers rich opportunities for the development of therapeutic methods and high-resolution retinal prosthetic devices. Quantum dots serve as an attractive building block for such surfaces, as they can be easily functionalized to match the biocompatibility and charge transport requirements of cell stimulation. Although indium based colloidal quantum dots with type-I band alignment have attracted significant attention as a nontoxic alternative to cadmium-based ones, little attention has been paid to their photovoltaic potential as type-II heterostructures. Herein, we demonstrate type-II indium phosphide/zinc oxide core/shell quantum dots that are incorporated into a photoelectrode structure for neural photostimulation. This induces a hyperpolarizing bioelectrical current that triggers the firing of a single neural cell at 4 mu W mm(-2), 26-fold lower than the ocular safety limit for continuous exposure to visible light. These findings show that nanomaterials can induce a biocompatible and effective biological junction and can introduce a route in the use of quantum dots in photoelectrode architectures for artificial retinal prostheses.en_US
dc.description.sponsorshipEuropean Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme - 639846en_US
dc.language.isoengen_US
dc.publisherAMER CHEMICAL SOC, 1155 16TH ST, NW, WASHINGTON, DC 20036 USAen_US
dc.relation.ispartofseriesACS NANO;Volume: 12 Issue: 8 Pages: 8104-8114
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectquantum doten_US
dc.subjectindium phosphideen_US
dc.subjectzinc oxideen_US
dc.subjecttype-II core/shellen_US
dc.subjectneuralen_US
dc.subjectphotostimulationen_US
dc.subjectbiocompatibleen_US
dc.titleEffective Neural Photostimulation Using Indium-Based Type-II Quantum Dotsen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümüen_US
dc.contributor.institutionauthor
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster