Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYousef, Malik
dc.contributor.authorBakir Gungor, Burcu
dc.contributor.authorJabeer, Amhar
dc.contributor.authorGoy, Gokhan
dc.contributor.authorQureshi, Rehman
dc.contributor.authorC Showe, Louise
dc.date.accessioned2021-06-18T09:16:22Z
dc.date.available2021-06-18T09:16:22Z
dc.date.issued2020en_US
dc.identifier.otherPMID: 33500779
dc.identifier.otherPMCID: PMC7802119
dc.identifier.urihttps://hdl.handle.net/20.500.12573/809
dc.description.abstractIn our earlier study, we proposed a novel feature selection approach, Recursive Cluster Elimination with Support Vector Machines (SVM-RCE) and implemented this approach in Matlab. Interest in this approach has grown over time and several researchers have incorporated SVM-RCE into their studies, resulting in a substantial number of scientific publications. This increased interest encouraged us to reconsider how feature selection, particularly in biological datasets, can benefit from considering the relationships of those genes in the selection process, this led to our development of SVM-RCE-R. SVM-RCE-R, further enhances the capabilities of SVM-RCE by the addition of a novel user specified ranking function. This ranking function enables the user to stipulate the weights of the accuracy, sensitivity, specificity, f-measure, area under the curve and the precision in the ranking function This flexibility allows the user to select for greater sensitivity or greater specificity as needed for a specific project. The usefulness of SVM-RCE-R is further supported by development of the maTE tool which uses a similar approach to identify microRNA (miRNA) targets. We have also now implemented the SVM-RCE-R algorithm in Knime in order to make it easier to applyThe use of SVM-RCE-R in Knime is simple and intuitive and allows researchers to immediately begin their analysis without having to consult an information technology specialist. The input for the Knime implemented tool is an EXCEL file (or text or CSV) with a simple structure and the output is also an EXCEL file. The Knime version also incorporates new features not available in SVM-RCE. The results show that the inclusion of the ranking function has a significant impact on the performance of SVM-RCE-R. Some of the clusters that achieve high scores for a specified ranking can also have high scores in other metrics.en_US
dc.language.isoengen_US
dc.publisherF1000 Researchen_US
dc.relation.isversionof10.12688/f1000research.26880.2en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectKNIMEen_US
dc.subjectclusteringen_US
dc.subjectgene expressionen_US
dc.subjectgroupingen_US
dc.subjectmachine learningen_US
dc.subjectrankingen_US
dc.subjectrecursiveen_US
dc.titleRecursive Cluster Elimination based Rank Function (SVM-RCE-R) implemented in KNIMEen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.institutionauthorBakir Gungor, Burcu
dc.contributor.institutionauthorJabeer, Amhar
dc.contributor.institutionauthorGoy, Gokhan
dc.identifier.doi10.12688/f1000research.26880.2
dc.identifier.volume9:1255en_US
dc.identifier.startpage1en_US
dc.identifier.endpage23en_US
dc.relation.journalF1000 Researchen_US
dc.relation.publicationcategoryMakale - Uluslararası - Editör Denetimli Dergien_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster