Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAydin, Zafer
dc.contributor.authorKaynar, Oguz
dc.contributor.authorGormez, Yasin
dc.date.accessioned2021-07-14T09:09:22Z
dc.date.available2021-07-14T09:09:22Z
dc.date.issued2017en_US
dc.identifier.issn2375-8244
dc.identifier.urihttps://doi.org/10.1109/CICN.2017.13
dc.identifier.urihttps://hdl.handle.net/20.500.12573/873
dc.descriptionThis work is supported by grant 113E550 from 3501 TUBITAK National Young Researchers Career Award.en_US
dc.description.abstractThree-dimensional structure prediction has crucial importance for bioinformatics and theoretical chemistry. One of the main steps of three-dimensional structure prediction is dihedral (torsion) angle prediction. As new feature extraction methods are developed the dimension of the input space increases considerably yielding longer model training and less accurate models due to noisy or redundant features. In this study, feature selection is employed for dimensionality reduction on one of the established benchmarks of protein 1D structure prediction. Experimental results show that the feature selection improves the accuracy of protein dihedral angle class prediction by 2% and can eliminate up to %82 of the features when random forest classifier is used. Accurate prediction of dihedral angles will eventually contribute to protein structure prediction.en_US
dc.description.sponsorship3501 TUBITAK National Young Researchers Career Award 113E550en_US
dc.language.isoengen_US
dc.publisherIEEE345 E 47TH ST, NEW YORK, NY 10017 USAen_US
dc.relation.isversionof10.1109/CICN.2017.13en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectrandom foresten_US
dc.subjectbackbone angleen_US
dc.subjectdihedral angle predictionen_US
dc.subjectprotein structure predictionen_US
dc.subjectfeature selectionen_US
dc.titleFeature Selection for Protein Dihedral Angle Predictionen_US
dc.typeconferenceObjecten_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.startpage48en_US
dc.identifier.endpage52en_US
dc.relation.journal2017 9TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN)en_US
dc.relation.tubitak113E550
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster