Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAydin, Zafer
dc.contributor.authorUzut, Ommu Gulsum
dc.date.accessioned2021-08-02T07:04:44Z
dc.date.available2021-08-02T07:04:44Z
dc.date.issued2017en_US
dc.identifier.isbn978-1-5090-5001-7
dc.identifier.issn2375-8244
dc.identifier.urihttps://doi.org/10.1109/CICN.2017.9
dc.identifier.urihttps://hdl.handle.net/20.500.12573/890
dc.descriptionAll computations were performed on TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA Resources). This work is supported by grant 113E550 from 3501 TUBITAK National Young Researchers Career Award.en_US
dc.description.abstractProtein secondary structure prediction is an important step in estimating the three dimensional structure of proteins. Among the many methods developed for predicting structural properties of proteins, hybrid classifiers and ensembles that combine predictions from several models are shown to improve the accuracy rates. In this paper, we train, optimize and combine a support vector machine, a deep convolutional neural field and a random forest in the second stage of a hybrid classifier for protein secondary structure prediction. We demonstrate that the overall accuracy of the proposed ensemble is comparable to the success rates of the state-of-the-art methods in the most difficult prediction setting and combining the selected models have the potential to further improve the accuracy of the base learners.en_US
dc.description.sponsorshipTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) 113E550 3501en_US
dc.language.isoengen_US
dc.publisherIEEE345 E 47TH ST, NEW YORK, NY 10017 USAen_US
dc.relation.isversionof10.1109/CICN.2017.9en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectdeep learningen_US
dc.subjectensemble methodsen_US
dc.subjecthybrid classifiersen_US
dc.subjectprotein secondary structure predictionen_US
dc.subjectbioinformaticsen_US
dc.titleCombining Classifiers for Protein Secondary Structure Predictionen_US
dc.typeconferenceObjecten_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.startpage29en_US
dc.identifier.endpage33en_US
dc.relation.journal9th International Conference on Computational Intelligence and Communication Networks (CICN)en_US
dc.relation.tubitak113E550
dc.relation.tubitak3501
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster