Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorThahir, Adam Rizvi
dc.date.accessioned2023-02-17T06:32:21Z
dc.date.available2023-02-17T06:32:21Z
dc.date.issued2022en_US
dc.date.submitted2022-06
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1435
dc.description.abstractTraffic congestion and delays caused in traffic light intersections can adversely affect countries in terms of money, time, and air pollution. With the advancement of computational power as well as artificial intelligent algorithms, researchers seek novel and optimized solutions to the traffic congestion problem. Most modern traffic light systems use manually designed traffic phase plans at intersections, and although this has proven to be relatively sufficient for today’s traffic management systems, implementing a smarter traffic phase selection system is deemed to be more effective. Traditional approaches rely heavily on traffic history (static information), whereas Reinforcement Learning (RL) algorithms, which offer an “adoptable"/dynamic traffic management system, are gaining increased research interest. Despite the usefulness of these RL based deep learning techniques, they inherently suffer from training time to apply them in realworld traffic management systems. This study aims to alleviate the training time problem of deep learning-based techniques, The research brings forth a novel graph-based approach that is able to use known occupancies of roads to predict which other roads in a given network would become congested in the future. Based on the predictions obtained, we are able to dynamically set traffic light times in all intersections within a connected network, starting from roads with known occupancies, and moving along connected roads that are anticipated to be congested. Predications are done using edge-based semisupervised graph algorithms. Conducted simulations show that our approach can yield comparable average wait time to that of deep-learning based approach in minutes, compared to the much longer training time required by the deep-learning models.en_US
dc.description.abstractTrafik ışıklı kavşaklarda meydana gelen trafik sıkışıklığı ve gecikmeler ülkeleri para, zaman ve hava kirliliği açısından olumsuz etkileyebilmektedir. Yapay zeka algoritmalarının yanı sıra hesaplama gücünün ilerlemesiyle birlikte, araştırmacılar trafik sıkışıklığı sorununa yeni ve optimize edilmiş bir çözümler aramaktadırlar. Çoğu modern kavşaklarda, manuel olarak tasarlanmış trafik faz planı kullanılmaktadır. Bunun günümüz trafik yönetim sistemleri için nispeten yeterli olduğu kanıtlanmış olsa da, akıllı bir trafik faz planı uygulanmasının daha etkili olduğu düşünülmektedir. Geleneksel yaklaşımlar büyük ölçüde geçmiş trafik verisine (statik bilgi) dayanırken, dinamik/adaptif bir trafik yönetim sistemi sunan Pekiştirmeli Öğrenme (RL) algoritmaları giderek daha fazla araştırmacıların ilgisini kazanmaktadır. Bu RL tabanlı derin öğrenme teknikleri kullanışlı olmasına rağmen eğitim sürelerinden dolayı gerçek hayattaki trafik yönetim sistemlerine uygulanması zordur. Bu çalışma, derin öğrenme tabanlı yöntemlerin eğitim süresi problemini çözmeyi amaçlamaktadır. Araştırma, belirli bir ağdaki diğer yolların gelecekte hangi durumda tıkanacağını tahmin etmek için bilinen yol doluluk durumlarından yararlanmayı sağlayan, yeni bir grafik tabanlı yaklaşım getirmektedir. Elde edilen tahminlere dayanarak, trafik sıkışıklığı bilinen bir yoldan başlayarak bir sonraki tıkanması beklenen bağlantılı yolları içeren ağdaki tüm kavşakların trafik ışık sürelerini dinamik olarak ayarlanabilmekteyiz. Tahminlemeler, kenar tabanlı yarı denetimli grafik algoritmaları kullanılarak yapılmaktadır. Yürütülen simülasyonlar, yaklaşımımızın derin öğrenme modellerinin gerektirdiği çok daha uzun eğitim süresiyle karşılaştırıldığında, birkaç dakika içinde derin öğrenme tabanlı yaklaşımla karşılaştırılabilir ortalama bekleme süresi sağlayabileceğini göstermektedir.en_US
dc.language.isoengen_US
dc.publisherAbdullah Gül Üniversitesi, Fen Bilimleri Enstitüsüen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDeep Learningen_US
dc.subjectReinforcement Learningen_US
dc.subjectTraffic Flowen_US
dc.subjectCongestionen_US
dc.titleGraph theory based traffic light managementen_US
dc.title.alternativeGrafik teorisi tabanlı trafik ışığı yöntemien_US
dc.typemasterThesisen_US
dc.contributor.departmentAGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalıen_US
dc.relation.publicationcategoryTezen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster