Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAltindis, Fatih
dc.contributor.authorBanerjee, Antara
dc.contributor.authorPhlypo, Ronald
dc.contributor.authorYilmaz, Bulent
dc.contributor.authorCongedo, Marco
dc.date.accessioned2024-02-01T14:03:50Z
dc.date.available2024-02-01T14:03:50Z
dc.date.issued2023en_US
dc.identifier.issn2168-2194
dc.identifier.issn2168-2208
dc.identifier.otherWOS:001083127700007
dc.identifier.urihttps://doi.org/10.1109/JBHI.2023.3299837
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1918
dc.description.abstractThis article presents a new transfer learning method named group learning, that jointly aligns multiple domains (many-to-many) and an extension named fast alignment that aligns any further domain to previously aligned group of domains (many-to-one). The proposed group alignment algorithm (GALIA) is evaluated on braincomputer interface (BCI) data and optimal hyper-parameter values of the algorithm are studied for classification performance and computational cost. Six publicly available P300 databases comprising 333 sessions from 177 subjects are used. As compared to the conventional subject-specific train/test pipeline, both group learning and fast alignment significantly improve the classification accuracy except for the database with clinical subjects (average improvement: 2.12±1.88%). GALIA utilizes cyclic approximate joint diagonalization (AJD) to find a set of linear transformations, one for each domain, jointly aligning the feature vectors of all domains. Group learning achieves a many-to-many transfer learning without compromising the classification performance on non-clinical BCI data. Fast alignment further extends the group learning for any unseen domains, allowing a many-to-one transfer learning with the same properties. The former method creates a single machine learning model using data from previous subjects and/or sessions, whereas the latter exploits the trained model for an unseen domain requiring no further training of the classifier.en_US
dc.description.sponsorshipAgence Nationale de la Recherche (ANR) ANT-20-CE17-0023en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/JBHI.2023.3299837en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBrain-computer interface (BCI)en_US
dc.subjecttransfer learningen_US
dc.subjectdomain adaptationen_US
dc.subjectriemannian geometryen_US
dc.subjectelectroencephalography (EEG)en_US
dc.titleTransfer Learning for P300 Brain-Computer Interfaces by Joint Alignment of Feature Vectorsen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-3891-935Xen_US
dc.contributor.authorID0000-0003-2954-1217en_US
dc.contributor.institutionauthorAltindis, Fatih
dc.contributor.institutionauthorYilmaz, Bulent
dc.identifier.volume27en_US
dc.identifier.issue10en_US
dc.identifier.startpage4696en_US
dc.identifier.endpage4706en_US
dc.relation.journalIEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICSen_US
dc.relation.tubitak1059B142100364
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster