Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYengec-Tasdemir, Sena Busra
dc.contributor.authorAydin, Zafer
dc.contributor.authorAkay, Ebru
dc.contributor.authorDogan, Serkan
dc.contributor.authorYilmaz, Bulent
dc.date.accessioned2024-03-28T07:11:59Z
dc.date.available2024-03-28T07:11:59Z
dc.date.issued2024en_US
dc.identifier.issn0010-4825
dc.identifier.urihttps://doi.org/10.1016/j.compbiomed.2024.108267
dc.identifier.urihttps://hdl.handle.net/20.500.12573/2035
dc.description.abstractEarly detection of colon adenomatous polyps is pivotal in reducing colon cancer risk. In this context, accurately distinguishing between adenomatous polyp subtypes, especially tubular and tubulovillous, from hyperplastic variants is crucial. This study introduces a cutting-edge computer-aided diagnosis system optimized for this task. Our system employs advanced Supervised Contrastive learning to ensure precise classification of colon histopathology images. Significantly, we have integrated the Big Transfer model, which has gained prominence for its exemplary adaptability to visual tasks in medical imaging. Our novel approach discerns between in-class and out-of-class images, thereby elevating its discriminatory power for polyp subtypes. We validated our system using two datasets: a specially curated one and the publicly accessible UniToPatho dataset. The results reveal that our model markedly surpasses traditional deep convolutional neural networks, registering classification accuracies of 87.1% and 70.3% for the custom and UniToPatho datasets, respectively. Such results emphasize the transformative potential of our model in polyp classification endeavors.en_US
dc.description.sponsorshipThis work was supported by the Scientific and Technological Research Council of Türkiye (TUBITAK) under Grant 120E204. The authors would like to thank Serdal Sadet Ozcan for her valuable contribution to detailed labeling of the dataset.en_US
dc.language.isoengen_US
dc.publisherELSEVIERen_US
dc.relation.isversionof10.1016/j.compbiomed.2024.108267en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectColonic polyp classificationen_US
dc.subjectHistopathology image classificationen_US
dc.subjectComputer-aided diagnosisen_US
dc.subjectBig transferen_US
dc.subjectSupervised contrastive learningen_US
dc.subjectTransfer learningen_US
dc.titleAn effective colorectal polyp classification for histopathological images based on supervised contrastive learningen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0001-7686-6298en_US
dc.contributor.authorID0000-0003-2954-1217en_US
dc.contributor.institutionauthorAydin, Zafer
dc.contributor.institutionauthorYilmaz, Bulent
dc.identifier.volume172en_US
dc.identifier.startpage1en_US
dc.identifier.endpage10en_US
dc.relation.journalComputers in Biology and Medicineen_US
dc.relation.tubitak120E204
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster