Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKolukisa, Burak
dc.contributor.authorDedeturk, Bilge Kagan
dc.contributor.authorDedeturk, Beyhan Adanur
dc.contributor.authorGulşen, Abdulkadir
dc.contributor.authorBakal, Gokhan
dc.date.accessioned2024-05-24T13:16:33Z
dc.date.available2024-05-24T13:16:33Z
dc.date.issued2021en_US
dc.identifier.isbn978-166542908-5
dc.identifier.urihttps://doi.org/10.1109/UBMK52708.2021.9559001
dc.identifier.urihttps://hdl.handle.net/20.500.12573/2154
dc.description.abstractThe document classification task is one of the widely studied research fields on multiple domains. The core motivation of the classification task is that the manual classification efforts are impractical due to the exponentially growing document volumes. Thus, we densely need to exploit automated computational approaches, such as machine learning models along with data & text mining techniques. In this study, we concentrated on the classification of medical articles specifically on common cancer types, due to the significance of the field and the decent number of available documents of interest. We deliberately targeted MEDLINE articles about common cancer types because most cancer types share a similar literature composition. Therefore, this situation makes the classification effort relatively more complicated. To this end, we built multiple machine learning models, including both traditional and deep learning architectures. We achieved the best performance (R¿82% F score) by the LSTM model. Overall, our results demonstrate a strong effect of exploiting both text mining and machine learning methods to distinguish medical articles on common cancer types.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionof10.1109/UBMK52708.2021.9559001en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectdocument classificationen_US
dc.subjecttext miningen_US
dc.subjectmachine learningen_US
dc.subjectdeep learningen_US
dc.titleA Comparative Analysis on Medical Article Classification Using Text Mining & Machine Learning Algorithmsen_US
dc.typeconferenceObjecten_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-0423-4595en_US
dc.contributor.authorID0000-0002-4250-2880en_US
dc.contributor.authorID0000-0003-2897-3894en_US
dc.contributor.institutionauthorKolukisa, Burak
dc.contributor.institutionauthorGulşen, Abdulkadir
dc.contributor.institutionauthorBakal, Gokhan
dc.contributor.institutionauthorDedeturk, Beyhan Adanur
dc.identifier.startpage1en_US
dc.identifier.endpage6en_US
dc.relation.journalProceedings - 6th International Conference on Computer Science and Engineering, UBMK 2021en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster