Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBakir-Gungor, Burcu
dc.contributor.authorTemiz, Mustafa
dc.contributor.authorInal, Yasin
dc.contributor.authorCicekyurt, Emre
dc.contributor.authorYousef, Malik
dc.date.accessioned2024-12-04T07:15:17Z
dc.date.available2024-12-04T07:15:17Z
dc.date.issued2024en_US
dc.identifier.issn0010-4825
dc.identifier.urihttps://doi.org/10.1016/j.compbiomed.2024.109098
dc.identifier.urihttps://hdl.handle.net/20.500.12573/2397
dc.description.abstractColorectal cancer (CRC) ranks as the third most common cancer globally and the second leading cause of cancer-related deaths. Recent research highlights the pivotal role of the gut microbiota in CRC development and progression. Understanding the complex interplay between disease development and metagenomic data is essential for CRC diagnosis and treatment. Current computational models employ machine learning to identify metagenomic biomarkers associated with CRC, yet there is a need to improve their accuracy through a holistic biological knowledge perspective. This study aims to evaluate CRC-associated metagenomic data at species, enzymes, and pathway levels via conducting global and population-specific analyses. These analyses utilize relative abundance values from human gut microbiome sequencing data and robust classification models are built for disease prediction and biomarker identification. For global CRC prediction and biomarker identification, the features that are identified by SelectKBest (SKB), Information Gain (IG), and Extreme Gradient Boosting (XGBoost) methods are combined. Population-based analysis includes within-population, leave-one-dataset-out (LODO) and cross-population approaches. Four classification algorithms are employed for CRC classification. Random Forest achieved an AUC of 0.83 for species data, 0.78 for enzyme data and 0.76 for pathway data globally. On the global scale, potential taxonomic biomarkers include ruthenibacterium lactatiformanas; enzyme biomarkers include RNA 2′ 3′ cyclic 3′ phosphodiesterase; and pathway biomarkers include pyruvate fermentation to acetone pathway. This study underscores the potential of machine learning models trained on metagenomic data for improved disease prediction and biomarker discovery. The proposed model and associated files are available at https://github.com/TemizMus/CCPRED.en_US
dc.language.isoengen_US
dc.publisherELSEVIERen_US
dc.relation.isversionof10.1016/j.compbiomed.2024.109098en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBiomarkersen_US
dc.subjectColorectal canceren_US
dc.subjectEnzymeen_US
dc.subjectMachine learningen_US
dc.subjectMetagenomicen_US
dc.subjectMicrobiomeen_US
dc.subjectSpeciesen_US
dc.titleCCPred: Global and population-specific colorectal cancer prediction and metagenomic biomarker identification at different molecular levels using machine learning techniquesen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-2272-6270en_US
dc.contributor.authorID0000-0002-2839-1424en_US
dc.contributor.authorID0009-0002-4373-8526en_US
dc.contributor.institutionauthorBakir-Gungor, Burcu
dc.contributor.institutionauthorTemiz, Mustafa
dc.contributor.institutionauthorInal, Yasin
dc.contributor.institutionauthorCicekyurt, Emre
dc.identifier.volume182en_US
dc.identifier.startpage1en_US
dc.identifier.endpage14en_US
dc.relation.journalComputers in Biology and Medicineen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster